

Reduction of tyre emissions for a better quality of life: LEON-T perspective.

nPETS Final Event

Brussels, November 12, 2024

J.J García

Low particle Emissions and IOw Noise Tyres

- Call / Topic / Project:
 H2020-MG-2020-TwoStages / LC-MG-1-14-2020 / 955387 (LEON-T)
- Duration: June 2021 until June 2024 (extension until Nov 2024)
- www.leont-Project.eu/the-Project/
- WP1: Project management
- WP2: Tyre wear and emissions
- WP3: Microplastics
- WP4: Tyre noise effects
- WP5: Airless tyre
- WP6: Policy recommendations
- WP7: Outreach and dissemination

Lab & on road Tyres in Measurement environmental Chemical transf.

In-service tyre emissions measurement

- Measurement concept: Enclosed wheel housing with constant volume sampling and online measurement of PN/PM emissions. Characterization/optimization of sampling efficiency based on tracer gas measurements
- Investigation relationship between particle size and PN vs. driving severity
- Many issues and uncertainties. Influencing factors: background concentration, traffic congestion, construction sites, agricultural activities.
- The concept cannot be used for regulatory purposes yet

driving dynamics

Tyre mass loss increases with temperature PM10 and PN emission increases with decreasing rubber hardness

Higher temperature – softer tyre – higher mass loss

PM10. Different tyres at same temperature

- Lower PM emission correlates to harder rubber mixes
- Winter tyres have softer rubber mixes
- 4-season tyre group with summer tyres

PN. summer & winter tyre at three different temperatures

 Lower PN emission correlates to harder rubber mixes and lower temperatures

Understanding the causes of tyre wear

- Braking & extreme tight cornering
- Modelling study based on the IDIADA tyre wear measurements

Acceleration

Constant spe

Deceleration

Wide bend driving

Special maneuver

Road surface properties vs TWP concentration

Asphalt surface has an influence on emission rate and particle size distribution of TWP:

- E18: stone mastic asphalt → more fine TWP
- A2: open graded asphalt → more coarse TWP
- E18 & A2 → lower road side soil concentration as regular asphalt

The bimodal size distribution, with peaks 5-25 & 50-200 µm is in agreement with the suggested abrasion mechanisms by Wagner (2018): micro-vibration + stick-slip motion

Size distribution regular (dense graded) asphalt

Size distribution Stone mastic & open graded asphalt

TWP concentrations in ambient air, soil & deposited dust LE N-T

Soil & Deposited dust:

- Highest TWP concentrations nearest to the road, with exponential decrease with increasing distance
- In city higher concentrations due to braking and accelerating
- More traffic (AADT) generates higher TWP concentrations

Ambient air:

- Highest TWP concentrations in Rotterdam (braking & accelerating)
- Highest concentration in coarse fractions (50-80% >10μm)
- Very small amount of TWP in UFP fraction (< 1% by mass)

UV-degradation and biodegradation rates of TWP

- UV & biodegradation rates of TWP are in the same order of magnitude, natural rubber degrades faster than SBR
- 1000 h simulates ~8 years of aging in the environment leading to UV degradation rates of 0.011 – 0.033 day⁻¹
- With UV ageing, particles get smaller environmental equivalent of -0.03 µm day-1
- Second peak <10 μm suggests particle fragmentation
- UV aging results in removal and partial oxidation of organic additives in TWP

OP vs chemical composition/transformation

- ALI exposure to PM samples didn't induce cytotoxicity and had no effect on metabolic activity of A549 cells.
- UV aging results in enhanced oxidative potential (acellulair immuno-assay)
- Findings can be explained by the difference in chemical composition of the non-aged and aged PM samples
- Aged PM samples contain more oxygenated species (aldehydes, carboxylic acids), which are more OP-active

Our every day contribution:

1 week : 350 gr/car

1 day : 50 gr/ car *

* Assume 0.8 gr/km/car; 60 km/day

Tyre emission factors

Review of tyre emissions before year 2000 in PARTICULATES project Review years 2000-2024 (around 300 tyre measurements) in LEON-T * Abrasion level **58 mg/km/t** and abrasion rate (AR) 96 mg/km for Europe

	Tyres	Weather	Category	Electrif.	AR	PM ₁₀	PM _{2.5}
	C1	summer	PC	ICE	AR	$PM_{10} = 0.038 \times AR$	$PM_{2.5} = 0.42 \times PM_{10}$
الله الله				xEV	1.25×AR	Electrified PCs 25	5% higher AR than ICE
_	C1	winter	PC	ICE	1.10× A R	Winter tyres 10%	higher ARs than sumi
				xEV	1.10×1.25×AR		
	C2	all	LCV	ICE	2.0×AR	LCVs 2 times hig	her ARs than PCs
				xEV	2.0×1.10×AR	Electrified LCVs	10% higher AR than IC
4	C3	all	HDV	ICE	8.0)AR	HDVs 8 times hig	her ARs than PCs
4				xEV	8.0×1.10×AR	Electrified HDVs	10% higher AR than IC

AR=abrasion rate; HDV=heavy-duty vehicle; ICE=internal combustion engine; LCV=light commercial vehicle; PC=passenger car; xEV=electrified vehicle (BEV or PHEV)

^{*} Sustainability 2024, 16(2), 522; https://doi.org/10.3390/su16020522

Mitigation measures

Reducing particles generation

- Technology measures: <u>improved tyres</u>, reduced vehicle weight, speed/acceleration limiters
- Management: Traffic flow and volume control, maintenance of roads and vehicles, public transport, taxation

Collecting particles (vehicle and road)

- Tyre dust collectors
- Asphalt with surfaces that trap particles

Reducing exposure and treating particles

- Planting vegetation
- Street cleaning
- Treating road runoff

Policy recommendations

- Tyre wear is largest source of microplastics, with at least 35% contribution
- Tyre emission factors were defined. They should be revised when the ongoing market assessment is finalized (at UNECE GRBP/GRPE TFTA level)
- The results of Leon-T support the current regulated (abrasion) methodology with a reference tyre
- The cost benefit analysis shows a clear net benefit of reducing the emission factors of the tyres in the market
- Qualitative analysis is ongoing whether other measures have also a net benefit.

Thank you!

- www.leont-Project.eu/the-Project/
- with the acknowledgements for the contributions from the entire LEON-T consortium

